Boundary-integral Calculations of 2d Em Scattering in Infinite Photonic Crystal Slabs: Channel Defects and Resonances
نویسندگان
چکیده
We compute the transmission of two-dimensional electromagnetic waves through a square lattice of lossless dielectric rods with a channel defect. The lattice is finite in the direction of propagation of the incident wave and periodic in a transverse direction. We revisit a boundaryintegral formulation of 2D electromagnetic scattering (Venakides, Haider, Papanicolaou, SIAM J. Appl. Math., 2000) that is Fredholm of the first kind and develop a second-kind formulation. We refine the numerical implementation in the above paper by exploiting separability in the Green’s function to evaluate the far-field influence more efficiently. The resulting cost savings in computing and solving the discretized linear system leads to an accelerated method. We use it to analyze E-polarized electromagnetic scattering of normally incident waves on a structure with a periodic channel defect. We find three categories of resonances: waveguide modes in the channel, highamplitude fields in the crystal at frequencies near the edge of the frequency bandgap, and very high-amplitude standing fields at frequencies in a transmission band that are normal to the direction of the incident wave. These features are captured essentially identically with first-kind formulation as with the second-kind.
منابع مشابه
Boundary-Integral Calculations of Two-Dimensional Electromagnetic Scattering in Infinite Photonic Crystal Slabs: Channel Defects and Resonances
We compute the transmission of two-dimensional (2D) electromagnetic waves through a square lattice of lossless dielectric rods with a channel defect. The lattice is finite in the direction of propagation of the incident wave and periodic in a transverse direction. We revisit a boundaryintegral formulation of 2D electromagnetic scattering [Venakides, Haider, and Papanicolaou, SIAM J. Appl. Math....
متن کاملResonance and Bound States in Photonic Crystal Slabs
Using boundary-integral projections for time-harmonic electromagnetic (EM) fields, and their numerical implementation, we analyze EM resonance in slabs of two-phase dielectric photonic crystal materials. We characterize resonant frequencies by a complex Floquet-Bloch dispersion relation ω = W (β) defined by the existence of a nontrivial nullspace of a pair of boundary-integral projections param...
متن کاملOptical Filter Based On Point Defects in 2D Photonic Crystal Structur
In this paper, we proposed a novel structure for designing all optical filter based on photonic crystal structure. In designing the proposed filter, we simply employed a point defect localized between input and output waveguides as wavelength selecting part of the filter. The initial form of this filter is capable of selecting optical waves at =1560 nm, the transmission efficiency of the filte...
متن کاملNovel Design of Optical Channel Drop Filter Based on Photonic Crystal Ring Resonators
In this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. The rods of this structure is silicon with the refractive index 3.46 and the surrounding environment is air with the refractive index of 1.The widest photonic band gap obtained is for filling ratio of r/a = 0.2. The filter’s transmission spec...
متن کاملNovel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices
In this paper, Using a 2D photonic crystal and a novel square ring resonator,several compact and simple structures have been introduced in the present paper toconstruct optical add/drop filters and multi-channel filter. The difference structures hasbeen designed and simulated by using the proposed square ring resonator and differentdropping waveguides. To do analyses, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002